Appendix A

Important Definitions Theorems and Formulas

Central Angle-A central angle is an angle formed by two intersecting radii such that its vertex is at the center of the circle.

Example:
$<\mathrm{XYZ}$ is a central angle inscribed in a circle.
Its intercepted arc is the minor arc from X to Z .
$\mathrm{m}<\mathrm{XYZ}=$ minor arc from X to Z .

NOTE: The measure of an arc of a circle is equal to the measure of the central angle that intercepts the arc.

Inscribed Angle-An inscribed angle is an angle with its vertex "on" the circle, formed by two intersecting chords.
Inscribed Angle $=\frac{1}{2}$ of the intercepted Arc.
Tangent Chord Angle-An angle formed by an intersecting tangent and chord has its vertex "on" the circle.
Tangent Chord Angle $=\frac{1}{2}$ of the intercepted Arc.
Example:

Measure of $\Varangle \mathrm{ABC}=\frac{1}{2}$ measure of $\operatorname{Arc} \mathrm{AB}$

Angle Formed Inside of a Circle by Two Intersecting Chords-When two chords intersect "inside" a circle, four angles are formed. At the point of intersection, two sets of vertical angles can be seen in the corners of the X that is formed on the picture. Remember: vertical angles are equal.
Angle formed inside by two chords $=\frac{1}{2}$ the sum of intercepted arcs.
Example:

$$
m \Varangle B E C=\frac{1}{2} m A R C A C+m A R C B C .
$$

$\frac{\text { arc length }}{\text { circumference }}=\frac{\text { arc measure }}{360 \circ}=\frac{\text { area of sector }}{\text { area of circle }}$

$$
(A+B) \cdot B \quad=(C+D) \cdot D
$$

